Abstract

Sediment-related disaster is one of the most significant natural disasters, from the perspective of magnitude, damage and loss to human life and infrastructure, and disruption to socio-economic activities. Debris, mud flood, landslide and cliff failure are the major catastrophic problems commonly experienced in most developing countries, including Malaysia. As rainfall is the main culprit to sediment-related disaster occurrences, rainfall data are crucial in the correlation of the occurred events. Several studies have been undertaken worldwide to estimate the critical rainfall conditions and draw the benchmark to predict landslide occurrences, specifically for debris and mudflows (DMF), and shallow landslides. Therefore, this paper presents an up-to-date picture on the development of the rainfall threshold from Malaysia’s perspective. Additionally, the open issues and challenges of deriving the rain threshold are also discussed in three aspects: collection of the dataset features, identification of the threshold and validation of the threshold. The outcomes of this review could serve as references for future studies in Malaysia and other developing countries in managing sediment-related disasters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.