Abstract

Objective: To explore the ability of computed-tomography (CT) radiomic features to predict the Epidermal growth factor receptor (EGFR) mutation status and the therapeutic response of advanced lung adenocarcinoma to EGFR- Tyrosine kinase inhibitors (TKIs) treatment. Methods: A retrospective analysis was performed on 253 patients diagnosed as advanced lung adenocarcinoma, who underwent EGFR mutation detection, and those with EGFR sensitive mutation were treated with TKIs. Using the Lasso regression model and the 10 fold cross-validation method, the radiomic features of predicted EGFR mutation status and the screening of TKIs for sensitive populations were obtained. 715 radiomic features were extracted from unenhanced, arterial phase and venous phase, respectively. Results: The area under curve (AUC) values of the multi-phases including unenhanced, arterial phase and venous phase of the EGFR mutation status validation group were 0.763, 0.807 and 0.808, respectively. The number of radiomic features extracted from the multi-phases were 5, 18 and 23, respectively, which could distinguish the EGFR mutation status. The AUC values of the multi-phases of the EGFR-TKIs sensitive validation group were 0.730, 0.833 and 0.895, respectively. The number of radiomic features extracted from the multi-phases were 3, 7 and 22, respectively, which can be used to screen the superior population for TKIs treatment. The efficiency of radiomic features extracted from venous phase in predicting EGFR mutant status and EGFR-TKIs sensitivity was significantly superior than those of unenhanced and arterial phase. Conclusions: The radiomic features of CT scanning can be used as the radiomics biomarker to predict the EGFR mutation status of lung adenocarcinoma and to further screen the dominant population in TKIs therapy, which provides the basis for targeted therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.