Abstract

The purpose of our study is to evaluate the T2 weighted sequence with multishot radial sampling (Radial Acquisition Multi-shot) also known as Multivane sequence in Philips Healthcare, introduced by J.Pipe with the aim to minimize motion artifacts in Magnetic Resonance Imaging (MRI). In the field of prostate MRI the Multivane sequence is useful in non-cooperating patients and/or patients who, due to their clinical conditions (such as glaucoma, arrhythmia, and severe benign prostatic hypertrophy), have not been receiving intravenous antispasmodic agents, administered for limiting the motility of intestinal loops, particularly rectum. The Multivane sequence is based on the collection of data throughout parallel multiple lines in periodic rotation around the center of k-space and advanced mathematical reconstruction. As the data at the center of k-space (low frequency) containing signals with maximum amplitude will be continuously sampled, this trajectory will provide an excellent contrast-noise ratio (CNR) and spatial resolution, without motion artifacts responsible of "blurring" in the final image. Specifically, each given point of the periphery of the k-space will be sampled by a certain line and the next one and so on, and for the final image reconstruction, once multiple data will be estimated, different algorithms will be used to compensate for motion artifacts. In this study we compared the Radial Acquisition Multishot TSE Multivane (Philips Healthcare) with the classic T2W TSE sequences with linear Cartesian sampling. Multivane sequences have proven to be superior and therefore of greater utility compared to sequences with linear Cartesian data sampling, in patients who can not receiving spasmolytic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call