Abstract

To deeply understand the micro-/mesoscale dynamic characteristics of the torrential rain process in Urumqi and improve the levels of torrential rain monitoring, forecasting and early warning, this paper analyzed the wind profile features and related scientific problems of three typical torrential rain events seen in 2013–2015 in this region. The research results suggested that: (1) Radar wind profiler can record in detail the movement condition of the atmosphere during the process of torrential rains. Carrying out detailed analyses on the wind profile data is conductive to the improvement in monitoring, forecasting and warning to torrential rain event at a single observation station. (2) When Urumqi experiences heavy rain weather, noticeable wind shear is usually observed above the observation station. In the upper air, it is southwest wind, while in the lower air it is northwest wind, which is the typical wind profile pattern for heavy rain events in the Urumqi region. (3) Obvious northwest low-level jet stream is found to go together with precipitation, and the jet is positively correlated with precipitation intensity. The velocity of low-level jet stream greatly impacts the amount and intensity of precipitation. (4) The rainstorm weather phenomena are clearly presented by the time–height chart of radar reflectivity factors. The high reflectivity values correspond positively to the height range of cloud–rain particles as well as the duration and intensity of precipitation, so it can be used as a reference index of precipitation monitoring and early warning. In a word, this research deepens on the recognition to the micro-/mesoscale weather systems during the process of heavy rains in Urumqi. Moreover, it would contribute to the application improvement of wind profiler data in analyzing the heavy rainfalls in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.