Abstract

The mapping of the predominant freeze/thaw state of the landscape is one of the main objectives of the National Aeronautics and Space Administration's proposed Soil Moisture Active Passive (SMAP) mission. This study applies Alaska Ecological Transect (ALECTRA) biophysical network temperature measurements and satellite radar scatterometer data from the Quick Scatterometer (QuikSCAT) to evaluate some of the validation issues regarding the planned SMAP freeze/thaw measurements. Although the QuikSCAT data are acquired at Ku-band frequency, rather than at the L-band frequency of the proposed SMAP instrument, QuikSCAT data do provide a high temporal fidelity over the ALECTRA sites, similar to SMAP. The results of this study show that multiple temperature measurements representative of individual landscape components (soil, snow cover, vegetation, and atmosphere) covering different types of terrain within the satellite field of view are important for understanding the freeze/thaw process and the aggregate radar backscatter response to that process. The backscatter temporal dynamics and relative contribution of the freeze/thaw state of these landscape elements to radar signal vary with land cover, seasonal weather, and climate conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.