Abstract
It is well known that when channel information is available at the transmitter, transmit beamforming scheme can be employed to enhance the performance of a multiple-antenna system. Recently, Jongren et al. and Zhou-Giannakis proposed a new performance criterion based on partial channel side information at the transmitter. With this criterion, an optimal beamforming matrix was constructed for the orthogonal space-time block codes. However, the same method has not been applied to the recently proposed quasi-orthogonal space-time block codes (QSTBCs) due to the nonorthogonal nature of the quasi-orthogonal designs. In this paper, the issue of combining beamforming with QSTBCs is addressed. Based on our asymptotic analysis, we extend the beamforming scheme from Jongren et al. and construct the beamforming matrices for the quasi-orthogonal designs. The proposed beamforming scheme accomplishes high transmission rate as well as high-order spatial diversity. The new QSTBC beamformer can be presented as a novel four-directional or eight-directional eigen-beamformer that works for systems with four or more transmit antennas. Simulations for systems with multiple transmit antennas demonstrate significant performance improvement over several other widely used beamforming methods at various SNRs and for channels with different quality of feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.