Abstract
Time series regression models have been widely studied in the literature by several authors. However, statistical analysis of replicated time series regression models has received little attention. In this paper, we study the application of the quasi-least squares method to estimate the parameters in a replicated time series model with errors that follow an autoregressive process of order p. We also discuss two other established methods for estimating the parameters: maximum likelihood assuming normality and the Yule-Walker method. When the number of repeated measurements is bounded and the number of replications n goes to infinity, the regression and the autocorrelation parameters are consistent and asymptotically normal for all three methods of estimation. Basically, the three methods estimate the regression parameter efficiently and differ in how they estimate the autocorrelation. When p=2, for normal data we use simulations to show that the quasi-least squares estimate of the autocorrelation is undoubtedly better than the Yule-Walker estimate. And the former estimate is as good as the maximum likelihood estimate almost over the entire parameter space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.