Abstract

With the widespread application of distributed power sources in distribution networks, fault self-healing technology has become the key to ensuring the reliability of power systems. The micro-grid ensures system stability with a three-layer structure, where the designed method handles optimization problems, achieving faster global search and optimal solutions. Agents develop targeted recovery strategies by understanding network load, which are then executed by higher-level agents to ensure that the optimal recovery command is implemented by the system. According to the research results, during peak load, the system successfully outputted 7 kilowatts and met the load demand through battery discharge, demonstrating its self-healing ability. The output analysis of photovoltaic and wind turbines showed that the system reasonably scheduled within 24 h according to the changes in solar energy and wind power. Based on the quantum behavior particle swarm optimization algorithm, the system has achieved lower active power loss and greater power supply capacity. Although the number of switch operations has increased, the system performance has significantly improved, meeting the requirements for improving system economy and safety. It has promoting effects on the sustainable development of future power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.