Abstract

Previous investigations have shown good clinical potential for the use of the 1.32 microns wavelength Nd:YAG laser because its soft tissue absorption is better than that of the 1.06 microns wavelength Nd:YAG laser. The 1.32 microns wavelength Nd:YAG laser has an absorption coefficient in water that is 10 times higher than the 1.06 microns wavelength Nd:YAG laser. A comparative in vivo study of laser soft tissue effects was performed by using the 1.32 microns wavelength and the 1.06 microns wavelength Nd:YAG lasers in a pulsed wave (PW) mode and continuous wave (CW) mode using a non-contact endoscopic delivery system. A standard 5 mm mucosal lesion was made in the canine tracheobronchial tree down to the level of the perichondrium. Soft tissue and cartilage effects were examined by light and scanning electron microscopy, acutely, 1 week and 2 weeks after operation, and a comparison was made between the different laser modalities. To create similar lesions, higher energy was required when using the 1.06 microns wavelength Nd:YAG laser. Soft tissue injury was greater with the 1.06 microns wavelength in CW mode, and no cartilage damage occurred in the PW mode. Soft tissue and cartilage repair after 1 and 2 weeks was better with the 1.32 microns wavelength laser. In comparison, the CO2 laser and the contact Nd:YAG laser proved to be more precise cutting tools than the 1.32 microns wavelength or the 1.06 microns wavelength Nd:YAG lasers. Both Nd:YAG laser wavelengths were useful for coagulation and vaporization of tissues and blood vessels. More studies are needed to determine the effect of the new 1.32 microns wavelengths on endotracheal tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call