Abstract

Objectives. To identify the regularities of electrochemical processing of the heat-resistant GS32-VI alloy in a sulfuric acid electrolyte with a concentration of 100 g/dm3 under the action of a pulsed current in a pulsed mode.Methods. Using the electrochemical technological complex EHK-1012 (developed by IP Tetran) and a non-compensatory method of measuring potential, polarization and depolarization curves with a change in pulse duration and a pause between them were recorded. The current pulses had an amplitude ranging from 0 to 3.5 A (when recording the polarization and depolarization curves), pulse durations ranging from 200 to 1200 ms, and a pause (delay) between pulses ranging from 50 to 500 ms. There were no reverse current pulses.Results. The parameters of the current program that provide the maximum values of the alloy dissolution rate and current output were determined: with a current pulse amplitude of 2 A, a current pulse duration of 500 ms, and a pause duration between pulses of 250 ms, the maximum dissolution rate of the alloy is 0.048 g/h·cm2, while the current output for nickel is 61.6% with an anode area of 10 cm2. The basic technological scheme for processing the heat-resistant GS32-VI alloy, which includes anodic alloy dissolution in a pulsed mode, is proposed.Conclusions. Electrochemical dissolution of GS32-VI alloy under pulsed current action results in an optimal dissolution rate ratio of the alloy components, ensuring the production of a cathode precipitate with a total nickel and cobalt content of 97.5%.

Highlights

  • The parameters of the current program that provide the maximum values of the alloy dissolution rate and current output were determined: with a current pulse amplitude of 2 A, a current pulse duration of 500 ms, and a pause duration between pulses of 250 ms, the maximum dissolution rate of the alloy is 0.048 g/h·cm[2], while the current output for nickel is 61.6% with an anode area of 10 cm[2]

  • Electrochemical dissolution of GS32-VI alloy under pulsed current action results in an optimal dissolution rate ratio of the alloy components, ensuring the production of a cathode precipitate with a total nickel and cobalt content of 97.5%

  • Способ электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений: Пат

Read more

Summary

НАУЧНАЯ СТАТЬЯ

Выявить закономерности электрохимической переработки жаропрочного сплава ЖС32-ВИ, проводимой в импульсном режиме в сернокислом электролите с концентрацией 100 г/дм[3] под действием импульсного тока. Амплитуда импульсов тока находилась в диапазоне значений от 0 до 3.5 А (при снятии поляризационных и деполяризационных кривых), длительности импульсов изменялись от 200 до 1200 мс, пауза (задержка) между импульсами – от 50 до 500 мс, импульсы реверсивного тока отсутствовали. При амплитуде импульса тока 2 А, длительности импульса тока 500 мс и продолжительности паузы между импульсами 250 мс максимальная скорость растворения сплава 0.048 г/ч·см[2], при этом выход по току для никеля равен 61.6% при площади анода 10 см[2]. Электрохимическое растворение сплава ЖС32-ВИ под действием импульсного тока способствует оптимальному соотношению скоростей растворения составляющих сплава, что обеспечивает получение катодного осадка с суммарным содержанием никеля и кобальта 97.5%. Применение импульсного тока для растворения жаропрочного сплава ЖС32-ВИ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Значение Value
Анодный шлам Anode sludge г
СПИСОК ЛИТЕРАТУРЫ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call