Abstract

AbstractThe classic spectral representation method (SRM)-based nonstationary process simulation algorithm is used extensively in the engineering community. However, it is less efficient owing to the unavailability of fast Fourier transform (FFT). In this paper, an efficient, almost accurate, and straightforward algorithm is developed for the simulation of the multivariate nonstationary process. In this method, an evolutionary spectral matrix is decomposed via Cholesky method, and then proper orthogonal decomposition (POD) is used to factorize decomposed spectra as the summation of the products of time and frequency functions. Because original time-dependent decomposed spectra are decoupled via factorization, FFT can be used to significantly expedite the simulation efficiency. This POD-based factorization is totally data-driven and optimal, and fewer items are required in matching decomposed spectra. Therefore, the accuracy and efficiency of the factorization can be guaranteed at the same time. Another att...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.