Abstract

A multicomponent analysis method based on principal component analysis-artificial neural network models (PC-ANN) is proposed for the determination of phenolic compounds. The method relies on the oxidative coupling of phenols (phenol, 2 chlorophenol, 3-chlorophenol and 4-chlorophenol) to N, N-diethyl- p-phenylenediamine in the presence of hexacyanoferrate(III). The reaction monitored at analytical wavelength 680 nm of the dye formed. Phenols can be determined individually over the concentration range 0.1–7.0 μg ml −1. Differences in the kinetic behavior of the four species were exploited by using PC-ANN, to resolve mixtures of phenol. After reducing the number of kinetic data using principal component analysis, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. The optimized ANN allows the simultaneous quantitation of four analytes in mixtures with relative standard errors of prediction in the region of 5% for four species. The results show that PC-ANN is an efficient method for prediction of the four analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.