Abstract

Optimal stacking of multiple data sets plays a significant role in many scientific domains. The quality of stacking will affect the signal-to-noise ratio and amplitude fidelity of the stacked image. In seismic data processing, the similarity-weighted stacking makes use of the local similarity between each trace and a reference trace as the weight to stack the flattened prestack seismic data after normal moveout correction. The traditional reference trace is an approximated zero-offset trace that is calculated from a direct arithmetic mean of the data matrix along the spatial direction. However, in the case that the data matrix contains abnormal misaligned trace, erratic, and non-Gaussian random noise, the accuracy of the approximated zero-offset trace would be greatly affected, and thereby further influence the quality of stacking. We propose a novel weighted stacking method that is based on principal component analysis. The principal components of the data matrix, namely, the useful signals, are extracted based on a low-rank decomposition method by solving an optimization problem with a low-rank constraint. The optimization problem is solved via a common singular value decomposition algorithm. The low-rank decomposition of the data matrix will alleviate the influence of abnormal trace, erratic, and non-Gaussian random noise, and thus will be more robust than the traditional alternatives. We use both synthetic and field data examples to show the successful performance of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call