Abstract

Positron Emission Particle Tracking (PEPT) is a non-invasive measurement technique which offers the ability to track the motion of individual particles with high temporal and spatial resolution, and thus build up an understanding of the bulk behaviour of a system from its microscopic (particle level) dynamics. Using this measurement technique, we have developed a series of novel metrics to better understand the behaviours of powders during the steady-state operation of a continuous blender system. Results are presented concerning the response of particle motion to processing parameters (mixing blade configuration and RPM), quantifying the motion in terms of predicted mixing performance. It was found that both increasing rpm and increasing hold-up mass (by selecting fewer transport blades and more mixing blades) provided improved mixing conditions. Interestingly, under specific conditions, there is evidence of convection-like mixing occurring at the interface of the transport and mixing region. This suggests the existence of a potential ’folding region’ whereby powder is transported up the barrel (and away from the powder bulk bed) before being reconstituted back into the bulk mass. The results also provide valuable experimental data for the development, calibration and validation of future Discrete Element Method (DEM) simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call