Abstract

Four different Fe–Cr binary alloys with Cr content 2.5–11 wt% were studied in details using various methods. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were applied to obtain basic information, required for standard positron annihilation lifetime spectroscopy (PALS) spectra analysis. Additionally, PALS measurements were performed on as-received state as well as on helium implanted specimens. The He implantation was proposed for simulation of radiation damage and obtain high doses even in near surface areas (up to 1 μm). The implantation was based on the SRIM code simulation and next DPA calculations. Final concentration of vacancy type defects were calculated for 250 keV He 2+ beam and the maximum was determined in 600 μm depth. Such specimens are very suitable for positron beam study of vacancy type defect mobility as a result of thermal treatment, which will be performed simultaneously in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.