Abstract
The polynomial chaos of Wiener provides a framework for the statistical analysis of dynamical systems, with computational cost far superior to Monte Carlo simulations. It is a useful tool for control systems analysis because it allows probabilistic description of the effects of uncertainty, especially in systems having nonlinearities and where other techniques, such as Lyapunov's method, may fail. We show that stability of a system can be inferred from the evolution of modal amplitudes, covering nearly the full support of the uncertain parameters with a finite series. By casting uncertain parameters as unknown gains, we show that the separation of stochastic from deterministic elements in the response points to fast iterative design methods for nonlinear control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.