Abstract

ObjectivesIschemic mitral regurgitation (IMR) results from ischemic left ventricular (LV) distortion and remodeling, which displaces the papillary muscles and tethers the mitral valve leaflets apically. The aim of this experimental study was to examine efficacy of an adjustable novel polymer filled mesh (poly-mesh) device to reverse LV remodeling and reduce IMR. MethodsAcute (N = 8) and chronic (8 weeks; N = 5) sheep models of IMR were studied. IMR was produced by ligation of circumflex branches to create myocardial infarction. An adjustable poly-mesh device was attached to infarcted myocardium in acute and chronic IMR models and compared with untreated sham sheep. Two- and 3-dimensional echocardiography and hemodynamic measurements were performed at baseline, post IMR, and post poly-mesh (humanely killed). ResultsIn acute models, moderate IMR developed in all sheep and decreased to trace/mild (vena contracta: 0.50 ± 0.09 cm to 0.26 ± 0.12 cm; P < .01) after poly-mesh. In chronic models, IMR decreased in all sheep after poly-mesh, and this reduction persisted over 8 weeks (vena contracta: 0.42 ± 0.09 cm to 0.08 ± 0.12 cm; P < .01) with significant increase in the slope of end-systolic pressure–volume relationship (1.1 ± 0.5 mm Hg/mL to 2.9 ± 0.7 mm Hg/mL; P < .05). There was a significant reduction in LV volumes from chronic IMR to euthanasia stage with poly-mesh compared with sham group (%end-diastolic volume change −20 ± 11 vs 15% ± 16%, P < .01; %end-systolic volume change −14% ± 19% vs 22% ± 22%, P < .05; poly-mesh vs sham group) consistent with reverse remodeling. ConclusionsAn adjustable polymer filled mesh device reduces IMR and prevents continued LV remodeling during chronic follow-up.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call