Abstract

We have used the polyelectrolyte theory to study the ionic strength dependence of the B-Z equilibrium in DNA. A DNA molecule is molded as an infinitely long continuously charged cylinder of radius a with reduced linear charge density q. The parameters a and q for the B and Z forms were taken from X-ray data: aB = 1nm, qB = 4.2, aZ = 0.9 nm and qZ = 3.9. A simple theory shows that at low ionic strengths (when Debye screening length rD much greater than a) the electrostatic free energy difference FelBZ = FelZ - FelB increases with increasing ionic strength since qB greater than qZ. At high ionic strengths (when rD much less than a) the FelBZ would go on growing with increasing ionic strength if the inequality qB/aB greater than qZ/aZ were valid. In the converse case when qZ/qB greater than aZ/aB the FelBZ value decreases with increasing salt concentration at high ionic strength. Since X-ray data correspond to the latter case, theory predicts that the FelBZ value reaches a maximum at an intermediate ionic strength of about 0.1 M (where rD approximately a). We also performed rigorous calculations based on the Poisson-Boltzmann equation. These calculations have confirmed the above criterion of nonmonotonous behaviour of the FelBZ value as a function of ionic strength. Different theoretical predictions for the B-Z transition in linear and superhelical molecules are discussed. Theory predicts specifically that at a very low ionic strength the Z form may prove to be more stable than the B form.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call