Abstract

All-solid-state electrolytes have received extensive attention due to their excellent safety and good electrochemical performance. However, due to the harsh conditions of the preparation process, the commercial production of all-solid-state electrolytes remains a challenge. The outbreak of the novel coronavirus pneumonia (COVID-19) has caused great inconvenience to people, while also allowing soft, lightweight and mass-producible non-woven fabrics in masks come into sight. Here, a polymer/polymer solid composite electrolyte is obtained by introducing the polyamide 6 (PA6) microfiber non-woven fabric into PEO polymer through the hot-pressing method. The addition of the PA6 non-woven fabric with lithium-philic properties can not only reduce the crystallinity of the polymer, but also provide more functional transmission sites and then promote the migration of lithium ions at the molecular level. Moreover, due to the sufficient mechanical strength and flexibility of the PA6 non-woven fabric, the composite electrolyte shows excellent inhibition ability of lithium dendrite growth and high electrochemical stability. The novel design concept of introducing low-cost and large-scale production of non-woven fabrics into all-solid-state composite electrolytes to develop high-performance lithium metal batteries is attractive, and can also be broadened to the combination of different types of polymers to meet the needs of various batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.