Abstract

ContextIn forestry, edge zones created by forest degradation and fragmentation are more susceptible to disturbances and extreme weather events. The increase in light regime near the edge can greatly alter forest microclimate and forest structure in the long term. In this context, understanding edge effects and their impact on forest structure could help to identify risks, facilitate forest management decisions or prioritise areas for conservation.ObjectiveIn this paper, we focus on the application of airborne laser scanning (ALS) data to assess the impact of edge effects on forest structural metrics in degraded rainforests in Sumatra, Indonesia. Changes in structural heterogeneity with respect to distance from an edge were also quantified.MethodsWe used 22 ALS structural metrics extracted from 105 plots in secondary forests adjacent to oil palm plantations and analysed the change in canopy structure across edge-to-interior transects. In addition, 91 plots taken from less disturbed areas were used as reference for comparison with the near-to-edge plots.ResultsOur analysis found strong evidence of degradation in the secondary forests studied, with multiple edge interactions resulting in a non-diminishing effect even at long distances from the forest edge. On average, we observed a large decrease of about 40% in all metrics of canopy height and about 25% in some metrics of canopy structure across all distances from an edge when compared to the interior forest conditions. Thus, in our forests, canopy height and structure were more susceptible to edge effects than metrics related to canopy gaps. Finally, the degraded forest in our study exhibited lower structural complexity, both at patch and landscape levels, suggesting that disturbances can greatly alter structural complexity in tropical rainforests.ConclusionOur study confirms the potential of ALS-derived vegetation metrics to study and understand the effects of forest edges and the associated changes in structural complexity over large areas in tropical rainforests. The approach followed here is transferrable to similarly fragmented landscapes in the tropics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call