Abstract

This study utilized the activated carbon fiber (ACF) modified with metal catalyst via physical vapor deposition (PVD) process (ACF/PVD) to diminish ozone. Furthermore, the ozone removal efficiency of ACF/PVD was compared with that of original ACF and ACF modified with metal catalyst via impregnation process (ACF/impregnation). In addition to the kinds of coated metal and the inlet ozone concentrations, the effects of the coating thickness and the reaction temperature on ACF/PVD for ozone removal were also examined. The results indicate that the ozone removal efficiency of ACF/PVD is better than that of original ACF and ACF/impregnation. The ozone removal efficiency of different metal-coated ACF/PVD in the superior order is gold (Au), and manganese (Mn). The increase of Au-coated thickness (3 nm to 80 nm) on ACF/PVD will enhance the ozone removal. However, when the Mn-coated thickness on ACF/PVD is larger than 15 nm, the ozone removal efficiency displays a declining trend. Furthermore, a higher reaction temperature will result in a better ozone removal of ACF/PVD and the original ACF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.