Abstract

Human gliomas are one of the most prevalent and challenging-to-treat adult brain tumors, and thus result in high morbidity and mortality rates worldwide. Current research and treatments of gliomas include surgery associated with conventional chemotherapy, use of biologicals, radiotherapy, and medical device applications. The selected treatment options are often guided by the category and aggressiveness of this deadly disease and the patient’s conditions. However, the effectiveness of these approaches is still limited due to poor drug efficacy (including delivery to desired sites), undesirable side effects, and high costs associated with therapies. In addition, the degree of leakiness of the blood–brain barrier (BBB) that regulates trafficking of molecules in and out of the brain also modulates accumulation of adequate drug levels to tumor sites. Active research is being pursued to overcome these limitations to obtain a superior therapeutic index and enhanced patient survival. One area of development in this direction focuses on the localized application of photodynamic therapy (PDT) drugs to cure brain cancers. PDT molecules potentially utilize multiple pathways based on their ability to generate reactive oxygen species (ROS) upon photoactivation by a suitable light source. In this communication, we have attempted to provide a brief overview of PDT and cancer, photoactivation pathways, mechanism of tumor destruction, effect of PDT on tumor cell viability, immune activation, various research attempted by applying PDT in combination with novel strategies to treat glioma, role of BBB and clinical status of PDT therapy for glioma treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call