Abstract

Water surface wave turbulence is one of the factors affecting the performances of underwater optical wireless communication (UOWC) systems. In our research, a phase-conjugate beam was used to correct the beam distortion and enhance the communication performances when a system is subject to surface wave turbulence. The phase-conjugate beam was generated by a phase-conjugate mirror (PCM), and a turbulence generator was used to generate surface wave turbulence in the experiment. We calculated the beam centroid distribution and the results showed that the phase-conjugate beam had a better propagation performance than the distorted beam at the different water depths. The root mean square (RMS) of the beam centroid for the phase-conjugate beam was 11 times less than that for the distorted beam, which meant that the phase-conjugate beam could effectively correct the beam drift. We further investigated the scintillation index and the signal-to-noise ratio (SNR); the results showed that the phase-conjugate beam was able to reduce the scintillation and an obvious improvement in SNR could be obtained. This research has the potential to be applied in UWC.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.