Abstract

Antibody-drug conjugates (ADCs) have become a pivotal area in the research and development of antitumor drugs. They provide innovative possibilities for tumor therapy by integrating the tumor-targeting capabilities of monoclonal antibodies with the cytotoxic effect of small molecule drugs. Pharmacometrics, an important discipline, facilitates comprehensive understanding of the pharmacokinetic characteristics of ADCs by integrating clinical trial data through modeling and simulation. However, due to the complex structure of ADCs, their modeling approaches are still unclear. In this review, we analyzed published population pharmacokinetic models for ADCs and classified them into single-analyte, two-analyte, and three-analyte models. We also described the benefits, limitations, and recommendations for each model. Furthermore, we suggested that the development of population pharmacokinetic models for ADCs should be rigorously considered and established based on four key aspects: (1) research objectives; (2) available in vitro and animal data; (3) accessible clinical information; and (4) the capability of bioanalytical methods. This review offered insights to guide the application of pharmacometrics in the clinical research of ADCs, thereby contributing to more effective therapeutic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.