Abstract

The pharmacologic field that studies antimicrobial pharmacokinetics and pharmacodynamics (PK/PD) has had a major impact on the choice and dosing regimens used for many antibiotics especially those used in the treatment of respiratory tract infections. PK/PD parameters are particularly important in light of increasing antimicrobial resistance. Drug pharmacokinetic features, such as serum concentrations over time and area under the concentration-time curve, when integrated with minimum inhibitory concentration (MIC) values of antibiotics against pathogens, can predict the probability of bacterial eradication and clinical success. These pharmacokinetic and pharmacodynamic relationships also are important in preventing the selection and spread of resistant strains and have led to the description of the mutation prevention concentration, which is the lowest concentration of antimicrobial that prevents selection of resistant bacteria from high bacterial inocula. b-lactams are time-dependent agents without significant post-antibiotic effects, resulting in bacterial eradication when unbound serum concentrations exceed MICs of these agents against infecting pathogens for >40% to 50% of the dosing interval. Macrolides, azaolides, and lincosamides are time-dependent agents with prolonged post-antibiotic effects, and fluoroquinolones are concentration-dependent agents, resulting in both cases in bacterial eradication when unbound serum area-under-the-curve to MIC ratios exceed 25 to 30. These observations have led to changes in recommended antimicrobial dosing against respiratory pathogens and are used to assess the role of current agents, develop new formulations, and assess potency of new antimicrobials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.