Abstract

The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical solutions. To alleviate this complexity, we approximate the solution of this equation by applying a multiparametric perturbation approach. We also investigated the sensitivity of traveltime surfaces in ORT media with respect to three anelliptic parameters. As a result, a simple and accurate P-wave traveltime approximation valid for ORT media was derived. Two different possible anelliptic parameterizations were compared. One of the parameterizations includes anelliptic parameters defined at zero offset: [Formula: see text], [Formula: see text], and [Formula: see text]. Another parameterization includes anelliptic parameters defined for all symmetry planes: [Formula: see text], [Formula: see text], and [Formula: see text]. The azimuthal behavior of sensitivity coefficients with different parameterizations was used to analyze the crosstalk between anelliptic parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.