Abstract

The contamination of plant organelle (mitochondria and plastid) genes in the DNA extraction step becomes a major drawback in investigating the community structures of bacteria associated with plant samples. This is because organelle small subunit ribosomal RNA (SSU rRNA) genes are easily amplified by polymerase chain reaction (PCR) with a set of universal primers for bacteria. To suppress the PCR amplification of the organelle SSU rRNA genes, a peptide nucleic acid (PNA)-PCR clamping technique was applied for selective amplification of bacterial SSU rRNA genes. The PNA oligomers, which had sequences that were complementary to mitochondria and plastid SSU rRNA genes, were designed to overlap the region in the 1492r primer-binding site. PCR with the PNA oligomers significantly suppressed the amplification of the organelle SSU rRNA genes from spinach and cucumber roots. Terminal restriction fragment length polymorphism (T-RFLP) analysis showed that the conventional amplification without PNA oligomers generated the predominant T-RFLP fragments derived from mitochondria and plastids, whereas there was little detection of the rhizobacterial fragments. In contrast, several other T-RFLP fragments derived from rhizobacteria were detected in the products amplified with PNA oligomers, thereby enabling us to differentiate the community structures in spinach and cucumber roots. Thus, application of PNA-PCR clamping was considered to be effective and is a useful technique to amplify the rhizobacterial SSU rRNA genes from selectively extracted DNA containing plant mitochondria and plastid genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call