Abstract

AbstractIn this work, composite microelectrodes from poly(3,4‐ethylenedioxythiophene) (PEDOT) and carbon nanotubes (CNT) are characterized as electrochemical sensing material for neurotransmitters. Dopamine can be detected using square wave voltammetry at these microelectrodes. The CNTs improve the sensitivity by a factor of two. In addition, the selectivity towards dopamine in the presence of ascorbic acid and uric acid was examined. While both electrodes, PEDOT and PEDOT‐CNT are able to detect all measured concentrations of dopamine in the presence of uric acid, small concentrations of dopamine and ascorbic acid are only distinguishable at PEDOT‐CNT electrodes. Changing the pH has a strong influence on the selectivity. Moreover, it is possible to detect concentrations as low as 1 µM dopamine in complex cell culture medium. Finally, other catecholamines like serotonin, epinephrine, norepinephrine and L‐dopa are also electrochemically detectable at PEDOT‐CNT microelectrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.