Abstract

The turbulence modeling in probability density function (PDF) methods is studied through applications to turbulent swirling and nonswirling co-axial jets and to the temporal shear layer. The PDF models are formulated at the level of either the joint PDF of velocity and turbulent frequency or the joint PDF of velocity, wave vector, and turbulent frequency. The methodology of wave vector models (WVMs) is based on an exact representation of rapidly distorted homogeneous turbulence, and several models are constructed in a previous paper [1]. A revision to a previously presented conditional-mean turbulent frequency model [2] is constructed to improve the numerical implementation of the model for inhomogeneous turbulent flows. A pressure transport model is also implemented in conjunction with several velocity models. The complete model yields good comparisons with available experimental data for a low swirl case. The individual models are also assessed in terms of their significance to an accurate solution of the co-axial jets, and a comparison is made to a similar assessment for the temporal shear layer. The crucial factor in determining the quality of the co-axial jet simulations is demonstrated to be the proper specification of a parameter ratio in the modeled source of turbulent frequency. The parameter specification is also shown to be significant in the temporal shear layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.