Abstract

Traditionally, supply chain planning problems consider variables with uncertainty associated with uncontrolled factors. These factors have been normally modelled by complex methodologies where the seeking solution process often presents high scale of difficulty. This work presents the fuzzy set theory as a tool to model uncertainty in supply chain planning problems and proposes the particle swarm optimisation PSO metaheuristics technique combined with a backward calculation as a solution method. The aim of this combination is to present a simple effective method to model uncertainty, while good quality solutions are obtained with metaheuristics due to its capacity to find them with satisfactory computational performance in complex problems, in a relatively short time period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.