Abstract

Contaminant source identification (CSI) procedures are drawing increasing attention due to the possibility of accidental and/or deliberate contaminant intrusion into water distribution systems. However, uncertainties that exist in the modeling have the potential to dramatically impact the capabilities of CSI procedures. Nodal demand uncertainties, as they influence false negative and false positive rates of contaminant detection, are examined. A procedure to quantify the false negative rate is provided, and the false positive issue is shown to be related to a parameter ‘m’. Addressing the false positive and negative issues is demonstrated as feasible due to the use of parallel computing in a super-computer, which reduces the elapsed time for 150 scenario simulations from 37.5 hrs to only 15 min in the case study. By increasing the number of scenarios in the database for CSI through the use of a super-computer, the opportunity exists to decrease the false negative rate and reduce the number of false possible intrusion nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.