Abstract

Photoactivated localization microscopy (PALM), one of the super resolution microscopy methods improving the resolution limit to 20nm, allows the detection of single molecules in complex protein structures in living cells. Microtubule-organizing centres (MTOCs) are large, multisubunit protein complexes, required for microtubule polymerization. The prominent MTOC in higher eukaryotes is the centrosome, and its functional ortholog in fungi is the spindle-pole body (SPB). There is ample evidence that besides centrosomes other MTOCs are important in eukaryotic cells. The filamentous ascomycetous fungus Aspergillus nidulans is a model organism, with hyphae consisting of multinucleate compartments separated by septa. In A. nidulans, besides the SPBs, a second type of MTOCs was discovered at septa (called septal MTOCs, sMTOC). All the MTOC components appear as big dots at SPBs and sMTOCs when tagged with a fluorescent protein and observed with conventional fluorescence microscopy due to the diffraction barrier. In this chapter, we describe the application of PALM in quantifying the numbers of individual proteins at both MTOC sites in A. nidulans and provide evidence that the composition of MTOCs is highly dynamic and dramatically changes during the cell cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call