Abstract

ABSTRACTNon-point source pollution from the Agri-sector (especially nitrogen (N)) due to the application of conventional urea with heavy rates not only depleted the water quality of Erhai Lake but also declined the nitrogen use efficiency (NUE) of different crops grown in the Erhai Lake Basin, Dali, Yunnan, China. It is imperative to mitigate the total nitrogen and its forms (nitrate (NO3−)-N and ammonium (NH4+)-N) loading to the surface and subsurface water flow through optimum fertilizer management for crop production in the region. To achieve this goal, a balanced crop nutrition system was practiced with different fertilizer types for rice-broad bean crop rotation system. The crop nutrition system consisted of No Fertilizers (CK), Conventional Fertilizer Practice (CF), Conventional urea as environmental Fertilizer (T1), Refined Organic Fertilizer applied solely (T2), Refined Organic Fertilizer applied with conventional urea (T3), Refined Organic Fertilizer applied in T2 was increased 4 times (T4), Refined Organic Fertilizer applied in T3 was increased 4 times but the same amount of conventional urea (T5), and Controlled Release Fertilizer (CRF) application (T6). The same rate of nitrogen (20% lower than CF) was applied in T1, T2, T3, and T6. All the former mentioned treatments were compared to CF with respect to different variables. In case of crop production, T6 gave maximum rice grain yield (9.9 t ha−1) and broad bean yield (5.1 t ha−1). Treatments T1 and T5 were at par for rice grain yield (7.8 t ha−1) and this quantity was not significantly lower than CF. Treatments T6, T5, and T1 were observed 29%, 47%, and 46%, respectively lower in TN loading to the surface and percolating water than the CF. Conventional urea and refined organic fertilizer combined with conventional urea at reduced nitrogen rates can be a reliable option for crop production in the Erhai Lake Basin with optimum yield under the rice-broad bean crop rotation system. CRF at reduced nitrogen rate can be a better option for higher yield and lower NO3–N, NH4+-N and total nitrogen losses to the surface runoff and leached water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call