Abstract

Nitrogen (N) is an important component of proteins and chlorophyll, and has been correlated with optical sensors as a means to determine N status during crop production. In this experiment, chrysanthemum ‘Amico Bronze’ and ‘Jacqueline Yellow’ had initial controlled-release fertilizer rates of 0, 5, 10, 15, or 20 g. Normalized Difference Vegetation Index (NDVI), Soil Plant Analytical Development (SPAD), and atLEAF sensor readings were taken at 10, 17, 24, 31, 38, and 45 days after adding initial fertilizer treatments (DAT). NDVI was correlated with leaf N concentration at all sampling dates except 17 DAT. Values for NDVI increased linearly up to 31 DAT for all treatments then plateaued at 45 DAT. Values for SPAD were only correlated with leaf N at 24 DAT, whereas, NDVI was correlated as early as 10 DAT. The atLEAF sensor was not correlated with leaf N at any sampling date. With weeks combined, correlation analysis showed correlations among leaf N and fertilizer rates, fertilizer rates and SPAD, and SPAD with NDVI and atLEAF. Thirty-one days after initial fertilizer treatment, 10 pots per treatment per cultivar were supplemented as following: 15 g supplemented to the 0 g treatment, 10 g to the 5 g treatment, and 5 g to the 10 g treatment at 31 DAT. With supplemented fertilizer treatments (SFTs), NDVI increased weekly until 45 DAT for ‘Amico Bronze’, while SPAD values did not increase in any treatments. The greatest atLEAF values occurred with 10 (+5) g and 0 (+15) g N in both cultivars. All sensor readings were only taken on leaves without any flowers. The greatest number of flowers, plant height, and shoot dry weight occurred with 10 (+5) g of additional N, but no differences occurred between 5 (+10) g and 0 (+15) g for height and shoot dry weight. No correlations existed between fertilizer rates, SPAD, NDVI, and leaf N for SFT in either cultivar. In summary, results indicated that NDVI values correlated greater (P ≤ 0.05 and P ≤ 0.01) with leaf N than SPAD and atLEAF chlorophyll sensors. Supplemental fertilizer application improved plant quality in terms of number of flowers, plant height, and shoot dry weight for all treatments, indicating that SFT could be used to correct N deficiency during crop production; however, not in combination with nondestructive sensor readings because of inconsistencies in the ability of all three sensors to separate among fertilizer treatments during a short production schedule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.