Abstract

The increasing use of active front steering (AFS) technology for obstacle avoidance raises the question of drivers’ interaction with vehicle automation. Mathematical models capable of representing such interaction are in demand for driver behavior study. This paper presents the application of open-loop Stackelberg equilibrium to modeling a driver's interaction with vehicle AFS control in an obstacle avoidance scenario, where both the driver and the AFS controller are exerting steering control to the vehicle. In this paper, such driver–AFS interactive steering control is modeled as a leader–follower game. Mathematical expressions of the driver's and the AFS controller's steering control strategies are derived using the linear quadratic dynamic optimization approach and the distributed model predictive control (DMPC) approach. These two approaches are found to give identical control gains, which suggest their equivalence in representing driver–AFS interaction. The DMPC approach is found to consume far less computation time due to its numerical nature. Mathematical modifications to the steering control strategies are then introduced to allow practical implementation for a future experimental study. Simulation results including time histories of steering angles and vehicle responses are illustrated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.