Abstract

AbstractIn Great Britain, 70% of wind-related faults on the transmission power network are attributed to the top 1% gusts. These faults cause outages to millions of customers and have extensive cascading impacts. This study illustrated the application of historical ground measured wind data in a multi-phase resilience analysis process by: (i) projecting an extreme wind event, (ii) assessing components’ vulnerabilities, (iii) analysing system’s response, (iv) quantifying baseline resilience, and (v) evaluating the effectiveness of selected adaptation measures. The extreme event was modelled as a ubiquitous 100-year return gust event impacting upon the operations of the Reduced Great Britain transmission network test case. The results show an unmet demand of about 569 GWh/Week. Adaptation measures were necessary for 60% of transmission corridors with responsiveness improving resilience by 70%, robustness by 55%, and redundancy by 35%. The study implies that resilience enhancement can be prioritized within high potency corridors and organisational resilience could prove to be more effective than infrastructural and operational resilience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.