Abstract

We applied a numerical device optimization scheme, where tens of parameters can be optimized simultaneously with multiple target performance criteria that are given. The key items of the design scheme are the selection of the best optimization algorithm, metric, and consideration for fabrication errors. This method was then applied to design an MMI beam combiner with rectangular effective refractive steps with up to 75 parameters, and we obtained a simulated insertion loss of 0.8dB for a 1.4mm-long 2×1 wavelength combiner, and a simulated insertion loss of 4.2dB for a 1.9mm-long 4×1 wavelength combiner, both with 20nm wavelength spacing. This methodology could also be applied to other types of optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.