Abstract

1,4-Dinitropyrazine-1,4-diium trinitromethanide {[1,4-pyrazine-NO2][C(NO2)3]2} as a novel nanostructured molten salt (NMS) catalyzed the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine derivatives via the one-pot three-component condensation reaction between several aromatic aldehyde, malononitrile and benzyl mercaptan at room temperature under solvent-free conditions. The synthesized NMS catalyst was fully characterized by FTIR, 1H NMR, 13CNMR, mass, thermal gravimetric, X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy analysis. The major advantages of described methodology are mildness, ease of separation, good yields and short reaction times. A rational mechanism was suggested for the final step of the 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines synthesis. We think that the proposed mechanism has potential for entering into the graduate text book in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.