Abstract

Observations of interplanetary scintillation (IPS – the scintillation of compact radio sources due to density variations in the solar wind) enable the velocity of the solar wind to be determined, and its bulk density to be estimated, throughout the inner heliosphere. A series of observations using the Low Frequency Array (LOFAR - a radio telescope centred on the Netherlands with stations across Europe) were undertaken using this technique to observe the passage of an ultra-fast CME which launched from the Sun following the X-class flare of 10 September 2017. LOFAR observed the strong radio source 3C147 at an elongation of 82 degrees from the Sun over a period of more than 30 h and observed a strong increase in speed to 900kms−1 followed two hours later by a strong increase in the level of scintillation, interpreted as a strong increase in density. Both speed and density remained enhanced for a period of more than seven hours, to beyond the period of observation. Further analysis of these data demonstrates a view of magnetic-field rotation due to the passage of the CME, using advanced IPS techniques only available to a unique instrument such as LOFAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call