Abstract

There is a strong need to develop purification methods for textile industrial wastewater containing toxic azo dyes. The reductive cleavage of azo dyes can be made by anaerobic bacteria, but the products of aromatic amines require an aerobic process. In this study a novel bacterial dye degrading consortium (DDC) of five isolated strains identified with 16S rRNA sequence: Proteus mirabilis (KR732288), Bacillus anthracis (KR732289), Enterobacter hormaechei (KR732290), Pseudomonas aeruginosa (KR732293) and Serratia rubidaea (KR732296) were used to aerobically decompose metabolite 2-aminobenxenesulfonic acid (2-ABS), as a model compound. The effect of three variables: temperature (28–42 °C), pH (5.0–8.0) and initial concentration of 2-ABS (5–40 ppm) was investigated in terms of degradation and chemical oxygen demand (COD) removal. Central composite design matrixand response surface methodology (RSM) were used for experimental design to evaluate theinteraction of the three process variables. The results show that up to 95% degradation and COD 90% removal are possible at optimal values of 32.4 ppm 2-ABS, pH 6.6 and a temperature of 35.7 °C. The theoretical response variables predicted by the developed RSM model was supported the experimental results. The optimized degradation of 2-ABS and COD removal were further confirmed by UV-HPLC analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.