Abstract

The realistic simulation of cavitation on a marine propeller is important for the efficient design of the propeller. However, the flow characteristic that occurred on the marine propeller is complicated and difficult to predict due to the combined effects of turbulence, cavitation, and multiphase phenomena. There is still currently no turbulence model that can predict these combined effects satisfactory. The nonlinear turbulence model is therefore modified and applied to predict the cavitation on a marine propeller for the first time in this work. It is found that the nonlinear turbulence model can predict the cavitation and hence the thrust and torque coefficients much more accurately than the existing Reynolds-averaged Navier–Stokes turbulence models including the Reynolds-stress model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call