Abstract

Nodal diffusion methods are usually used for LWR calculations and rarely used for research reactor calculations. A unified nodal method with an implementation of the coarse mesh finite difference acceleration was developed for use in plate type research reactor calculations. It was validated for two PWR benchmark problems and then applied for IAEA MTR benchmark problem for static calculations to check the validity and accuracy of the method. This work was conducted to investigate the unified nodal method capability to treat material testing reactor cores. A 10MW research reactor core is considered with three calculation cases for low enriched uranium fuel depending on the core burnup status of fresh, beginning-of-life, and end-of-life cores. The validation work included criticality calculations, flux distribution, and power distribution; in addition, a comparison between different fuel materials with the same uranium content was conducted. The homogenized two-group cross sections were generated using the TRITON–NEWT system. The results were compared with a reference, which was taken from IAEA-TECDOC-233. The unified nodal method provides satisfactory results for an all-rod out case, and the three-dimensional, two-group diffusion model can be considered accurate enough for MTR core calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.