Abstract
The paper investigates some nonconforming finite elements and nonconforming finite element schemes for solving an advection—diffusion equation. This investigation is aimed at finding new schemes for solving parabolic equations. The study uses a finite element method, variational-difference schemes, and test calculations. Two types of schemes are examined: one is obtained with the help of the Bubnov—Galerkin method from a weak problem determination (nonmonotone scheme), and the other one is a monotone up-stream scheme obtained from an approximate weak problem determination with a special approximation of the skew-symmetric terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.