Abstract
Stainless steel, as a popular corrosion resistant material, is still vulnerable to pitting corrosion in the marine environment. Therefore, in order to ensure the safety of stainless steel in the marine environment, it is necessary to implement corresponding protective measures. Titanium dioxide (TiO2), as an N-type semiconductor with excellent photoelectric properties, is widely used in the field of cathodic protection. However, as a photogenerated cathodic corrosion protection material, TiO2has the disadvantages of low conductivity and high carrier recombination rate. Therefore, WS2and NIS were introduced in this paper to modify it. TiO2/WS2/NiS (TWN) composites with Type-Ⅱ heterojunction structure were prepared by hydrothermal method and titration method. The results reveal TWN5 showed the best photoelectrochemical (PEC) performance, and the photocurrent density was 69% higher than that of a pure TiO2photoanode, and the photochemical and photocathodic protection performance was significantly better than that of pure TiO2. Under simulated ocean conditions, the self-corrosion potential of 304ss combined with TW5 and TWN5 photoanodes is reduced to -0.64 V and -0.7 V, respectively. The main reason is that the contact surfaces of WS2and TiO2formed a Type II heterostructure, which accelerates the separation and diffusion processes of photoinduced carriers. In addition, the plasmon resonance effect of NiS improves the ability to absorb visible light, and the metallic-like feature of NiS also promotes charge separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.