Abstract

Aramid fabrics are used to produce most of the flame resistant protection clothes to fulfil the protection requirements. Even though aramid fibers have good thermal stability and flame resistance properties, fabrics used in protective clothing age and loss some of their essential functions under various environmental and operational conditions during their lifetime. These conditions cause serious limitations in the use of clothing. In this study, various woven fabrics produced from aramid (Nomex, Kevlar) fabrics were exposed to accelerated aging tests under varying temperature and time period in order to construct Neural Network models to predict weight loss and tensile strength loss percentages of the fabrics. The results of Artificial Neural Network models demonstrate that regression values are 0.98405 for weight loss percentages and 0.99935 for tensile strength loss percentages of the fabrics. Accordingly, the proposed Artificial Neural Network models are correctly constituted and the losses in determined fabric properties is successfully predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.