Abstract

Two of the proposed high temperature gas reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects in the reactor pressure vessel during normal operation. This work addresses the criteria for negligible creep in subsection NH, Division 1 of the ASME Boiler and Pressure Vessel Code, Sec. III, other international design codes, and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. The goal of negligible creep could have different interpretations depending on what failure modes are considered and associated criteria for avoiding the effects of creep. It is shown that for the materials of this study, consideration of localized damage due to cycling of peak stresses results in a lower temperature for negligible creep than consideration of the temperature at which the allowable stress is governed by the creep properties. In assessing the effect of localized cyclic stresses, it is also shown that consideration of cyclic softening is an important effect that results in a higher estimated temperature for the onset of significant creep effects than would be the case if the material were cyclically hardening. There are other considerations for the selection of vessel material besides avoiding creep effects. Of interest for this review are (1) the material’s allowable stress level and impact on the wall thickness (the goal being to minimize the required wall thickness) and (2) ASME code approval (inclusion as a permitted material in the relevant section and subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr–1Mo (also referred to as Grade 91), and to a potential alternate, normalized and tempered 214 Cr–1Mo, is illustrated, and the relative advantages and disadvantages of the materials are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call