Abstract

This work concerns the investigation of loading layers/substrate structures in order to determine the critical thickness at which Rayleigh wave characteristics of layers can be completely distinguished from those of the substrates. To do so, we first calculate Rayleigh velocity dispersion curves of several thin film materials (about thirty) deposited on different slow and fast substrates (Be, Al 2O 3, AlN, Si, SiO 2, Mg, SiC, TiN, WC and Pyrex). Then, from the beginning of curve saturation (corresponding to the onset of intrinsic layer characteristics) we deduced normalized thickness transition for all layers/substrates combinations. Thus, we were able to deduce an analytical linear expression relating the critical thickness to combined effects of densities and velocities of both layers and substrates. Such a simple relation can be used, as an alternative method, to predict the transition critical thickness for any layer/substrate combination without the usual lengthy calculation of dispersion curves. To cite this article: Z. Hadjoub et al., C. R. Physique 9 (2008).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.