Abstract
This article deals with developing a coupled scale-dependent model to explore the nonlinear bifurcation response of initially imperfect nanotubes conveying nanofluid flow taking into consideration the influences of nonlinear viscoelasticity. Furthermore, the influences of both centrifugal and Coriolis forces are considered. The Beskok–Karniadakis model is employed to capture the influences of slip at the interface between the imperfect viscoelastic nanotube and the nanofluid. A refined combination of nonlocal and strain gradient elasticities is employed for taking into consideration size influences. After formulating the kinetic energy, elastic energy, viscous work and external work, the nonlinear coupled equations are derived for the nanofluid-conveying nanosystem, which simultaneously vibrates along the transverse and longitudinal directions. The nonlinear dynamical characteristics are calculated via utilising a Galerkin procedure and a direct-time-integration technique. It is found that chaotic regions can be removed by imposing a proper geometric imperfection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Microsystem Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.