Abstract

ObjectivesPrompt antibiotic treatment of early stage Lyme borreliosis (LB) prevents progression to severe multisystem disease. There is a clinical need to improve the diagnostic specificity of early stage Lyme assays in the period prior to the mounting of a robust serology response. Using a novel analyte harvesting nanotechnology, Nanotrap particles, we evaluated urinary Borrelia Outer surface protein A (OspA) C-terminus peptide in early stage LB before and after treatment, and in patients suspected of late stage disseminated LB.MethodWe employed Nanotrap particles to concentrate urinary OspA and used a highly specific anti-OspA monoclonal antibody (mAb) as a detector of the C-terminus peptides. We mapped the mAb epitope to a narrow specific OspA C-terminal domain OspA236-239 conserved across infectious Borrelia species but with no homology to human proteins and no cross-reactivity with relevant viral and non-Borrelia bacterial proteins. 268 urine samples from patients being evaluated for all categories of LB were collected in a LB endemic area. The urinary OspA assay, blinded to outcome, utilized Nanotrap particle pre-processing, western blotting to evaluate the OspA molecular size, and OspA peptide competition for confirmation.ResultsOspA test characteristics: sensitivity 1.7 pg/mL (lowest limit of detection), % coefficient of variation (CV) = 8 %, dynamic range 1.7–30 pg/mL. Pre-treatment, 24/24 newly diagnosed patients with an erythema migrans (EM) rash were positive for urinary OspA while false positives for asymptomatic patients were 0/117 (Chi squared p < 10−6). For 10 patients who exhibited persistence of the EM rash during the course of antibiotic therapy, 10/10 were positive for urinary OspA. Urinary OspA of 8/8 patients switched from detectable to undetectable following symptom resolution post-treatment. Specificity of the urinary OspA test for the clinical symptoms was 40/40. Specificity of the urinary OspA antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e−15). 41 of 100 patients under surveillance for persistent LB in an endemic area were positive for urinary OspA protein.ConclusionsOspA urinary shedding was strongly linked to concurrent active symptoms (e.g. EM rash and arthritis), while resolution of these symptoms after therapy correlated with urinary conversion to OspA negative.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0701-z) contains supplementary material, which is available to authorized users.

Highlights

  • Prompt antibiotic treatment of early stage Lyme borreliosis (LB) can prevent progression of the disease from the localized stage to the early and late disseminated stages [1, 2]

  • Specificity of the urinary Outer surface protein A (OspA) antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e−15). 41 of 100 patients under surveillance for persistent LB in an endemic area were positive for urinary OspA protein

  • OspA urinary shedding was strongly linked to concurrent active symptoms (e.g. erythema migrans (EM) rash and arthritis), while resolution of these symptoms after therapy correlated with urinary conversion to OspA negative

Read more

Summary

Introduction

Prompt antibiotic treatment of early stage Lyme borreliosis (LB) can prevent progression of the disease from the localized stage to the early and late disseminated stages [1, 2]. It would be valuable to know with greater certainty whether a first round of therapy is successful or should be repeated because of Borrelia persistence [8, 10, 16, 17]. To address these needs we evaluated urinary Borrelia Outer surface protein A (OspA) in early stage LB using an analyte harvesting nanotechnology, Nanotrap particles, to achieve high sensitivity [18, 19], coupled with an anti-OspA monoclonal antibody (mAb) which we show to recognize a narrow specific OspA C-terminal region, OspA236-239. OspA26-239 sequence is conserved across infectious Borrelia species, but does not have sequence homology with human or non-Borrelia relevant pathogens

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.