Abstract
AbstractAfter decades of research, the crucial role of primary metabolites as necessary compounds for the basic life functions and secondary metabolites as essential compounds for the survival and adapting to the environment during abiotic and biotic stresses conditions were deduced. Various secondary metabolites like alkaloids, flavonoids, phenolic acids, steroids, glycosides, tannins, resins, terpenoids, etc., are extensively studied for their commercial applications in cosmetics, pharmaceuticals, nutraceuticals, and food industries. Currently, there is a vast scope in enhancing plant secondary metabolite production to obtain high yields appropriate for commercial use. Different elicitation methods like biotic (rhizobacteria and fungus) and abiotic (light, salt, metals, temperatures, and drought) elicitors are used to increase secondary metabolite production. Lately, phytonanotechnology has been gaining more attention in plant biotechnology to develop efficient methods to increase plant growth and enhance the production of plant secondary metabolites. The framework of this chapter summarizes the impact of nanomaterials in promoting the production of secondary plant metabolites and their applications. Based on available scientific reports, the knowledge of nanomaterial–plant interactions, mechanism, factors governing these cross-talks, and their biological significance are explored here. Additionally, to improve the influence of nanoparticles on the production of valuable pant secondary metabolites, future directions and strategies for developing formulations are discussed.KeywordsNanomaterialsSecondary metabolitesEngineered nanoparticlesPhytonanotechnologyNanomaterial-plant interactions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.